Velocity Analysis of a Four-bar Mechanism

Find \bar{V}_A

$$|\bar{V}_A| = a \omega_2$$

Form vector triangle $\bar{V}_B = \bar{V}_A + \bar{V}_{BA}$

Direction of \bar{V}_B: $pp \perp O_4B$

Direction of \bar{V}_{BA}: $qq \perp AB$

\bar{V}_B along pp at tail of \bar{V}_A

\bar{V}_{BA} along pp at tip of \bar{V}_A (transfer the parallel line)

Tips of \bar{V}_{BA} and \bar{V}_B meet.

Find Angular Velocities

$$|\omega_3| = \frac{|\bar{V}_{BA}|}{AB}$$

$$|\omega_4| = \frac{|\bar{V}_B|}{O_{4B}}$$

Two ways to find \bar{V}_{CA}

$$|\bar{V}_{CA}| = |\omega_3|AC \quad \text{or}$$

By Similar Triangles

Find the velocities of a coupler point C

$$\bar{V}_C = \bar{V}_A + \bar{V}_{CA}$$