Chapter 38 Problem $53{ }^{\dagger}$

Solution

How old is the archaeological find?
The half-life of carbon-14 is 5730 yr . Since the carbon-14 content is 34% of current day values, then

$$
\frac{N}{N_{0}}=0.34
$$

Using the half-life radioactive decay equation

$$
N=N_{0} 2^{-t / t_{1 / 2}}
$$

Solve for t

$$
\frac{N}{N_{0}}=2^{-t / t_{1 / 2}}
$$

Take the \log base- 2 of each side

$$
\begin{aligned}
& \log _{2}\left(\frac{N}{N_{0}}\right)=-t / t_{1 / 2} \\
& t=-t_{1 / 2} \log _{2}\left(\frac{N}{N_{0}}\right)=-(5730 y r) \log _{2}(0.34)
\end{aligned}
$$

Therefore,

$$
t=-(5730 y r)(-1.556)=8916 y r
$$

Most of us do not have calculators that do $\log _{2}$. Therefore, the more reliable way of solving this problem is to find the decay constant first.

$$
\lambda=\frac{\ln 2}{t_{1 / 2}}=\frac{\ln 2}{5730 y r}=1.210 \times 10^{-4} y r^{-1}
$$

Now use the base-e model

$$
N=N_{0} e^{-\lambda t}
$$

Divide by N_{0} and take the natural log of both sides

$$
\ln \left(\frac{N}{N_{0}}\right)=-\lambda t
$$

Therefore,

$$
t=\frac{-\ln \left(\frac{N}{N_{0}}\right)}{\lambda}=\frac{-\ln (0.34)}{1.210 \times 10^{-4} y r^{-1}}=8916 \mathrm{yr}=8900 \mathrm{yr}
$$

