Chapter 32 Problem $48{ }^{\dagger}$

Given

$E_{F}=11.6 \mathrm{eV}$
$m=9.11 \times 10^{-31} \mathrm{~kg}$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Solution

Find the density of conduction electrons in aluminum.
First convert the energy into joules

$$
E_{F}=(11.6 \mathrm{eV})\left(\frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)=1.86 \times 10^{-18} \mathrm{~J}
$$

The density of conduction electrons is given by

$$
\begin{aligned}
& n=\left(\frac{2^{9 / 2} \pi m^{3 / 2}}{3 h^{3}}\right) E_{F}^{3 / 2} \\
& n=\left(\frac{2^{9 / 2} \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)^{3 / 2}}{3\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{3}}\right)\left(1.86 \times 10^{-18} \mathrm{~J}\right)^{3 / 2} \\
& n=1.79 \times 10^{29} e^{-} / \mathrm{m}^{3}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

