Chapter 36 Problem $45{ }^{\dagger}$

Given

State $=4 F_{5 / 2}$

Solution

a) Find its energy in units of ground-state energy.

The principle quantum number is tied to the energy of the electron. For the hydrogen atom this is given by the formula

$$
E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}}
$$

Since the ground state is $n=1$, then the energy in units of ground-state energy is

$$
E_{n}=\frac{E_{1}}{n^{2}}
$$

The first number of the quantum state indicates that $n=4$, so the energy is

$$
E=\frac{E_{1}}{16}
$$

b) Find the orbital angular momentum in units of \hbar.

Angular momentum is given by the formula

$$
L=\sqrt{l(l+1)} \hbar
$$

From the quantum state of the orbital angular momentum, F corresponds to $l=3$. Therefore,

$$
L=\sqrt{3(3+1)} \hbar=\sqrt{12} \hbar
$$

In units of \hbar, the orbital angular momentum is

$$
L=\sqrt{12}
$$

c) Find the magnitude of the total angular momentum in units of \hbar.

The total angular momentum is given by the formula

$$
J=\sqrt{j(j+1)} \hbar
$$

The quantum state of the total angular momentum is $j=5 / 2$. Therefore,

$$
J=\sqrt{(5 / 2)(5 / 2+1)} \hbar=\sqrt{(5 / 2)(7 / 2)} \hbar=\sqrt{35 / 4} \hbar=\frac{1}{2} \sqrt{35} \hbar
$$

In units of \hbar the total angular momentum is

$$
J=\frac{1}{2} \sqrt{35}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

