Chapter 35 Problem $47{ }^{\dagger}$

Solution

Find the probability of finding a particle in the ground state of an infinite square well with a detector that has a resolution of 15% of the well width.

The normalized wave function for a particle in the ground state of an infinite square well is

$$
\psi=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} x\right)
$$

To find the probability integrate the square of the wave function over the interval of interest.

$$
\begin{align*}
& P(x)=\psi^{2} d x \\
& P=\int_{x_{0}}^{x_{1}}\left(\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} x\right)\right)^{2} d x \\
& P=\int_{x_{0}}^{x_{1}} \frac{2}{L} \sin ^{2}\left(\frac{\pi}{L} x\right) d x \\
& P=\frac{2}{L} \int_{x_{0}}^{x_{1}} \frac{1}{2}\left(1-\cos \left(\frac{2 \pi}{L} x\right)\right) d x \\
& P=\frac{1}{L}\left(x-\left.\frac{\sin \left(\frac{2 \pi}{L} x\right)}{2 \pi / L}\right|_{x_{0}} ^{x_{1}}\right. \\
& P=\frac{1}{L}\left(x_{1}-\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} x_{1}\right)-x_{0}+\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} x_{0}\right)\right) \tag{1}
\end{align*}
$$

a) Find the probability centered on the middle of the well.

Since the detector has a resolution of $0.15 L$, then half of this range is on each side of $0.5 L$ gives

$$
\begin{aligned}
& x_{0}=0.50 L-\frac{1}{2} 0.15 L=0.425 L \\
& x_{1}=0.50 L+\frac{1}{2} 0.15 L=0.575 L
\end{aligned}
$$

From equation (1) the probability is

$$
\begin{aligned}
P & =\frac{1}{L}\left(0.575 L-\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} 0.575 L\right)-0.425 L+\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} 0.425 L\right)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi} \sin (2 \pi 0.575)+\frac{L}{2 \pi} \sin (2 \pi 0.425)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi} \sin (1.15 \pi)+\frac{L}{2 \pi} \sin (0.850 \pi)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi}(-0.454)+\frac{L}{2 \pi}(0.454)\right)=0.295
\end{aligned}
$$

b) Find the probability centered on the first quarter of the well.

[^0]Since the detector has a resolution of 0.15 L , then half of this range is on each side of 0.25 L gives

$$
\begin{aligned}
& x_{0}=0.25 L-\frac{1}{2} 0.15 L=0.175 L \\
& x_{1}=0.25 L+\frac{1}{2} 0.15 L=0.325 L
\end{aligned}
$$

From equation (1) the probability is

$$
\begin{aligned}
P & =\frac{1}{L}\left(0.325 L-\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} 0.325 L\right)-0.175 L+\frac{L}{2 \pi} \sin \left(\frac{2 \pi}{L} 0.175 L\right)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi} \sin (2 \pi 0.325)+\frac{L}{2 \pi} \sin (2 \pi 0.175)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi} \sin (0.650 \pi)+\frac{L}{2 \pi} \sin (0.350 \pi)\right) \\
P & =\frac{1}{L}\left(0.150 L-\frac{L}{2 \pi}(0.891)+\frac{L}{2 \pi}(0.891)\right)=0.15
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

