Chapter 34 Problem $41{ }^{\dagger}$

Given

$\lambda_{\max }=558 \mathrm{~nm}$

Solution

a) What is the temperature of the blackbody?

Using Wein's law

$$
\begin{aligned}
& \lambda_{\text {peak }} T=2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K} \\
& T=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{\lambda_{\text {peak }}}=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{558 \times 10^{-9}}=5190 \mathrm{~K}
\end{aligned}
$$

b) What is the ratio of radiance at 382 nm compared to 694 nm ?

The radiance formula for a blackbody radiator is

$$
R(\lambda, T)=\frac{2 \pi h c^{2}}{\lambda^{5}\left(e^{h c / \lambda k T}-1\right)}
$$

The radiance at 382 nm is

$$
\begin{aligned}
R(382 \mathrm{~nm}, 5190 \mathrm{~K}) & =\frac{2 \pi\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{\left(382 \times 10^{-9} \mathrm{~m}\right)^{5}\left(e^{\left(6.63 \times 10^{-34} \mathrm{Js}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(\left(382 \times 10^{-9} \mathrm{~m}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(5190 \mathrm{~K})\right)}-1\right)} \\
R(382 \mathrm{~nm}, 5190 \mathrm{~K}) & =3.23 \times 10^{13}
\end{aligned}
$$

The radiance at 694 nm is

$$
\begin{aligned}
& R(694 \mathrm{~nm}, 5190 \mathrm{~K})=\frac{2 \pi\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{\left(694 \times 10^{-9} \mathrm{~m}\right)^{5}\left(e^{\left.\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(694 \times 10^{-9} \mathrm{~m}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(5190 \mathrm{~K})\right)}-1\right)} \\
& R(694 \mathrm{~nm}, 5190 \mathrm{~K})=4.35 \times 10^{13}
\end{aligned}
$$

The ratio of the two radiance is then

$$
\frac{R(382 \mathrm{~nm}, 5190 \mathrm{~K})}{R(694 \mathrm{~nm}, 5190 \mathrm{~K})}=\frac{3.23 \times 10^{13}}{4.35 \times 10^{13}}=0.743
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

