Chapter 34 Problem $36{ }^{\dagger}$

Given

$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$v=5.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
$\Delta v= \pm 10 \%$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Solution

Find the minimum uncertainty of the position.
The uncertainty of the velocity is from -10% to $+10 \%$ or

$$
\Delta v=0.20\left(5.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

From Heisenberg's uncertainty principle

$$
\Delta x \Delta p \geq \hbar
$$

Rewriting momentum as velocity times mass and solving for uncertainty in position we get

$$
m \Delta x \Delta v \geq \frac{h}{2 \pi}
$$

$$
\Delta x \geq \frac{h}{2 \pi m \Delta v}
$$

Substituting in the provided values gives

$$
\Delta x \geq \frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{2 \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}
$$

$$
\Delta x \geq 1.16 \times 10^{-11} \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

