Chapter 33 Problem $60{ }^{\dagger}$

Given
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$

Solution

a) Find the speed of an electron with a kinetic energy of 100 eV .

The relationship between kinetic energy and velocity is

$$
\begin{aligned}
& E=\gamma m c^{2}=K+m c^{2} \\
& \frac{1}{\sqrt{1-(v / c)^{2}}} m c^{2}=K+m c^{2}
\end{aligned}
$$

where m is the rest mass of the electron and K is the kinetic energy of the electron. Solving for velocity gives

$$
\begin{align*}
& \frac{1}{\sqrt{1-(v / c)^{2}}}=\frac{K}{m c^{2}}+1 \\
& \frac{1}{1-(v / c)^{2}}=\left(\frac{K}{m c^{2}}+1\right)^{2} \\
& 1-(v / c)^{2}=\frac{1}{\left(\frac{K}{m c^{2}}+1\right)^{2}} \\
& (v / c)^{2}=1-\frac{1}{\left(\frac{K}{m c^{2}}+1\right)^{2}} \\
& v=c \sqrt{1-\frac{1}{\left(\frac{K}{m c^{2}}+1\right)^{2}}} \tag{1}
\end{align*}
$$

Next convert the kinetic energy into joules and substitute the appropriate values into equation 1.

$$
\begin{aligned}
& K=(100 \mathrm{eV})\left(\frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)=1.6 \times 10^{-17} \mathrm{~J} \\
& v=c \sqrt{1-\frac{1}{\left(\frac{1.6 \times 10^{-17 \mathrm{~J}}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}+1\right)^{2}}}=0.0198 \mathrm{c}
\end{aligned}
$$

b) Find the speed of an electron with a kinetic energy of 100 keV .

Convert the kinetic energy into joules and substitute the appropriate values into equation 1.

$$
\begin{aligned}
& K=\left(100 \times 10^{3} \mathrm{eV}\right)\left(\frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)=1.6 \times 10^{-14} \mathrm{~J} \\
& v=c \sqrt{1-\frac{1}{\left(\frac{1.6 \times 10^{-14} \mathrm{~J}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}+1\right)^{2}}}=0.548 c
\end{aligned}
$$

[^0]c) Find the speed of an electron with a kinetic energy of 1.0 MeV .

Convert the kinetic energy into joules and substitute the appropriate values into equation 1.

$$
\begin{aligned}
& K=\left(1.0 \times 10^{6} \mathrm{eV}\right)\left(\frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)=1.6 \times 10^{-13} \mathrm{~J} \\
& v=c \sqrt{1-\frac{1}{\left(\frac{1.6 \times 10^{-13} \mathrm{~J}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}+1\right)^{2}}}=0.941 c
\end{aligned}
$$

d) Find the speed of an electron with a kinetic energy of 1.0 GeV .

Convert the kinetic energy into joules and substitute the appropriate values into equation 1.

$$
\begin{aligned}
& K=\left(1.0 \times 10^{9} \mathrm{eV}\right)\left(\frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)=1.6 \times 10^{-10} \mathrm{~J} \\
& v=c \sqrt{1-\frac{1}{\left(\frac{1.6 \times 10^{-10 \mathrm{~J}}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}+1\right)^{2}}}=0.99999987 \mathrm{c}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

