Chapter 33 Problem $54{ }^{\dagger}$

Solution

Find the original velocity if the momentum triples when the velocity doubles.
The relativistic momentum of a particle is given by the equation

$$
p=\gamma m v=\frac{m v}{\sqrt{1-(v / c)^{2}}}
$$

Since the momentum triples, then

$$
\begin{aligned}
& p=3 p_{0} \\
& \frac{m v}{\sqrt{1-(v / c)^{2}}}=3\left(\frac{m v_{0}}{\sqrt{1-\left(v_{0} / c\right)^{2}}}\right)
\end{aligned}
$$

But we know the velocity doubles, so $v=2 v_{0}$.

$$
\begin{aligned}
& \frac{m\left(2 v_{0}\right)}{\sqrt{1-\left(2 v_{0} / c\right)^{2}}}=\frac{3 m v_{0}}{\sqrt{1-\left(v_{0} / c\right)^{2}}} \\
& \frac{2 m v_{0}}{\sqrt{1-4\left(v_{0} / c\right)^{2}}}=\frac{3 m v_{0}}{\sqrt{1-\left(v_{0} / c\right)^{2}}}
\end{aligned}
$$

Multiply both sides by $\sqrt{1-4\left(v_{0} / c\right)^{2}} /\left(3 m v_{0}\right)$ gives

$$
\frac{2 m v_{0}}{3 m v_{0}}=\frac{\sqrt{1-4\left(v_{0} / c\right)^{2}}}{\sqrt{1-\left(v_{0} / c\right)^{2}}}
$$

Simplfy and square both sides

$$
\left(\frac{2}{3}\right)^{2}=\frac{1-4\left(v_{0} / c\right)^{2}}{1-\left(v_{0} / c\right)^{2}}
$$

Multiply both sides by $1-\left(v_{0} / c\right)^{2}$ and solve for v_{0} / c.

$$
\begin{aligned}
& \frac{4}{9}\left(1-\left(v_{0} / c\right)^{2}\right)=1-4\left(v_{0} / c\right)^{2} \\
& \frac{4}{9}-\frac{4}{9}\left(v_{0} / c\right)^{2}=1-4\left(v_{0} / c\right)^{2} \\
& 4\left(v_{0} / c\right)^{2}-\frac{4}{9}\left(v_{0} / c\right)^{2}=1-\frac{4}{9}
\end{aligned}
$$

Get a common denominator.

$$
\begin{aligned}
& \frac{36}{9}\left(v_{0} / c\right)^{2}-\frac{4}{9}\left(v_{0} / c\right)^{2}=\frac{9}{9}-\frac{4}{9} \\
& \frac{32}{9}\left(v_{0} / c\right)^{2}=\frac{5}{9} \\
& \left(v_{0} / c\right)^{2}=\frac{5}{9} \frac{9}{32}=\frac{5}{32}
\end{aligned}
$$

Therefore,

$$
v_{0}=c \sqrt{\frac{5}{32}}=0.395 c
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

