Chapter 33 Problem 33^{\dagger}

Given

$t_{0}=20 y r$
$v=0.95 c$
$x^{\prime}=30 l y$

Solution

Find the ages when the twins are united.
With respect to the earth's frame of reference the time of the trip will be the distance divided by the velocity.

$$
t=\frac{d}{v}=\frac{30 l y}{0.95 c}=31.6 \mathrm{yr}
$$

Remember that a light year is the speed of light times one year. Therefore, a light year divided by the speed of light is one year. For the round trip the time is 63.2 years making twin A 83.2 yr old. For twin B the time will be shorter as determined by the time contraction formula

$$
t^{\prime}=\gamma \cdot t
$$

Solving for the time in the moving space ship we have

$$
t=\frac{t^{\prime}}{\gamma}=\frac{t^{\prime}}{\frac{1}{\sqrt{1-v^{2} / c^{2}}}}=\sqrt{1-v^{2} / c^{2} t^{\prime}}
$$

Using $t^{\prime}=63.2 y r$ which is the time for the whole trip twin B experiences

$$
t=\sqrt{1-(0.95 c)^{2} / c^{2}}(63.2 y r)=19.7 y r
$$

Adding twenty years makes twin B 39.7 yr.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

