Chapter 18 Problem $51{ }^{\dagger}$

Given

$\gamma=1.67$
$P_{A}=250 k P a=2.5 \times 10^{5} P a$
$V_{A}=1.00 \mathrm{~m}^{3}$
$V_{B}=3.00 \mathrm{~m}^{3}$

Solution

a) Find the pressure at B.

The process from A to B is adiabatic. The relationship between pressure and volume is then

$$
P V^{\gamma}=\text { const. }
$$

The pressure and volume at A and B are then related by

$$
P_{A} V_{A}^{\gamma}=P_{B} V_{B}^{\gamma}
$$

Solving for the pressure at B gives

$$
\begin{aligned}
& P_{B}=\frac{P_{A} V_{A}^{\gamma}}{V_{B}^{\gamma}}=P_{A}\left(\frac{V_{A}}{V_{B}}\right)^{\gamma} \\
& P_{B}=\left(2.5 \times 10^{5} \mathrm{~Pa}\right)\left(\frac{1.0 \mathrm{~m}^{3}}{3.0 \mathrm{~m}^{3}}\right)^{1.67}=3.99 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

b) Find the pressure at C.

The process from C to A is isothermal. There relationship between pressure and volume is then

$$
P V=n R T=\text { const } .
$$

The pressure and volume at C and A are then related by

$$
P_{C} V_{C}=P_{A} V_{A}
$$

Solving for the pressure at C gives

$$
P_{C}=P_{A}\left(\frac{V_{A}}{V_{C}}\right)=\left(2.5 \times 10^{5} \mathrm{~Pa}\right)\left(\frac{1.0 \mathrm{~m}^{3}}{3.0 \mathrm{~m}^{3}}\right)=8.33 \times 10^{4} \mathrm{~Pa}
$$

[^0]c) Find the net work done on the gas.

The work done during the adiabatic process is

$$
\begin{aligned}
& W=\frac{P_{A} V_{A}-P_{B} V_{B}}{\gamma-1} \\
& W=-\frac{\left(2.5 \times 10^{5} \mathrm{~Pa}\right)\left(1.0 \mathrm{~m}^{3}\right)-\left(3.99 \times 10^{4} \mathrm{~Pa}\right)\left(3.0 \mathrm{~m}^{3}\right)}{1.67-1} \\
& W=-1.94 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

The work done during the process B to C is $0 J$ since the volume does not change. The work done during the isothermal process is

$$
W=-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

Since $n R T$ is constant, we can replace it with $P_{A} V_{A}$.

$$
\begin{aligned}
& W=-P_{A} V_{A} \ln \left(\frac{V_{A}}{V_{C}}\right)=\left(2.5 \times 10^{5} \mathrm{~Pa}\right)\left(1.0 \mathrm{~m}^{3}\right) \ln \left(\frac{1.0 \mathrm{~m}^{3}}{3.0 \mathrm{~m}^{3}}\right) \\
& W=2.75 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

The total work is the sum of the work for all three processes.

$$
\begin{aligned}
& W=-1.94 \times 10^{5} J+0 J+2.75 \times 10^{5} J \\
& W=8.1 \times 10^{4} J
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

