Chapter 18 Problem $41{ }^{\dagger}$

Given

Compression ratio $=8.5$
$T i=30{ }^{\circ} \mathrm{C}$
$\gamma=1.4$
adiabatic compression

Solution

Find the temperature at maximum compression.
The compression ratio gives us a ratio of the volumes. When the gas-air mixture is entering the engine the volume is a maximum. At maximum compression the volume is a minimum. From this compression ratio we get the relationship

$$
V_{i}=8.5 V_{f}
$$

Since the process is adiabatic, the relationship between temperature and volume is

$$
T V^{\gamma-1}=\text { const }
$$

Therefore, the comparison between initial and final volume and temperature is

$$
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
$$

Solving for the final temperature gives us

$$
T_{f}=\frac{T_{i} V_{i}^{\gamma-1}}{V_{f}^{\gamma-1}}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}
$$

The temperature used here is an absolute temperature. Therefore, we must convert the temperature to the kelvin scale.

$$
\begin{aligned}
& T_{f}=(273+30)\left(\frac{8.5 V_{f}}{V_{f}}\right)^{1.4-1} \\
& T_{f}=713 \mathrm{~K} \text { or } 440^{\circ} \mathrm{C}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

