Chapter 17 Problem $70{ }^{\dagger}$

Given

$L_{0}=1.35 \mathrm{~m}$
$T_{0}=20^{\circ} \mathrm{C}$
$T_{f}=17^{\circ} \mathrm{C}$
$\alpha_{\text {brass }}=19 \times 10^{-6} K^{-1}$

Solution

Find the time at which the clock will be in error by 1 minute.
First find the new length of the pendulum.

$$
\begin{aligned}
& L_{f}=L_{0}(1+\alpha \Delta T)=(1.35 \mathrm{~m})\left(1+\left(19 \times 10^{-6} K^{-1}\right)\left(17^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right. \\
& L_{f}=1.34992305 \mathrm{~m}
\end{aligned}
$$

Now the time period for a simple pendulum is

$$
\text { time }=2 \pi \sqrt{\frac{L}{g}}
$$

At room temperature the time period of the pendulum is

$$
\begin{aligned}
\text { time }_{0} & =2 \pi \sqrt{\frac{1.35 m}{9.8 m / s^{2}}} \\
\text { time }_{0} & =2.332027754 \mathrm{~s}
\end{aligned}
$$

Given the size of the difference, a lot more significant figures are maintained that usual. The time period at the current temperature is

$$
\begin{aligned}
\text { time }_{f} & =2 \pi \sqrt{\frac{1.34992305 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}} \\
\text { time }_{f} & =2.33196129 \mathrm{~s}
\end{aligned}
$$

Since the pendulum is shorter, the time period is also shorter. The fraction of error in the new pendulum is

$$
\epsilon=\frac{\text { time }_{0}-\text { time }_{f}}{t i m e}=\frac{2.332027754 s-2.33196129 s}{2.332027754 s}=2.85005 \times 10^{-5}
$$

This is an error of 0.00285005

$$
\epsilon=\frac{\text { cumulative error }}{\text { total time }}
$$

Solving for total time gives

$$
\text { total time }=\frac{\text { cumulative error }}{\epsilon}=\frac{60 \mathrm{~s}}{2.85005 \times 10^{-5}}=2.105 \times 10^{6} \mathrm{~s}
$$

Converting this to hours gives 584.8 hours or 24.37 days.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

