Chapter 17 Problem $62{ }^{\dagger}$

Given
$T_{i}=10{ }^{\circ} \mathrm{C}$
$T_{f}=35^{\circ} \mathrm{C}$
$V_{f}=75 L$
$\beta=95 \times 10^{-5} K^{-1}$

Solution

Find the volume placed in the tank which will not over flow when the gas warms up.
The volume expansion is given by

$$
\beta=\frac{\Delta V / V}{\Delta T}
$$

This leads to the formula

$$
\Delta V=\beta V \Delta T
$$

Substitute in the provided values gives

$$
\Delta V=\left(95 \times 10^{-5} K^{-1}\right)(75 L)\left(35^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)
$$

The expansion tank must handle the volume

$$
\Delta V=1.78 L
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

