Chapter 17 Problem 52 †

Given $m_p = 16 \ kg$ $T_p = 25 \ ^{\circ}C$ $T_f = 0 \ ^{\circ}C$ $L_f = 334 \ kJ/kg$ $c_p = 4.184 \ kJ/kg \cdot K$

Solution

Find the amount of ice to cool the punch to 0 $^{\circ}C$.

As the ice is added, the heat will from from the punch to the ice.

 $\Delta Q_{ice} + \Delta Q_p = 0$

Since the ice is melting, it is gaining energy.

 $m_{ice}L_f + m_p c_p (T_f - T_i) = 0$

Solving for the mass of ice gives us

$$m_{ice} = \frac{-m_p c_p (T_f - T_i)}{L_f}$$

Substituting in the given values we have

$$m_{ice} = \frac{-(16 \ kg)(4.184 \ kJ/kg \cdot K)(0 - 25^{\circ}C)}{(334 \ kJ/kg)}$$

 $m_{ice} = 5.01 \ kg$

[†]Problem from Essential University Physics, Wolfson