Chapter 17 Problem $36{ }^{\dagger}$

Given

$V_{1}=8.0 \mathrm{~L}$
$T_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
$P_{1}=1 \mathrm{~atm}$
$P_{2}=0.65 \mathrm{~atm}$
$T_{2}=-10{ }^{\circ} \mathrm{C}=263 \mathrm{~K}$

Solution

Find the volume at the new altitude.
Notice that the temperatures are converted into absolute temperature (kelvin scale). Begin with the ideal gas law.

$$
P V=n R T
$$

Assuming there is no loss of gas.

$$
\frac{P V}{T}=n R=\mathrm{constant}
$$

Therefore,

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Solving for the final volume gives

$$
\begin{aligned}
& V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}} \\
& V_{2}=\frac{(1 \mathrm{~atm})(8.0 \mathrm{~L})(263 \mathrm{~K})}{(0.65 \mathrm{~atm})(293 \mathrm{~K})}=11.0 \mathrm{~L}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

