## Chapter 17 Problem $34{ }^{\dagger}$

## Given

$L=5,000 \mathrm{~km}$
$T_{i}=-25{ }^{\circ} \mathrm{C}$
$T_{f}=40^{\circ} \mathrm{C}$
$\alpha_{\text {steel }}=12 \times 10^{-6} K^{-1}$

## Solution

Find the change in length.
The linear coefficient of expansion is given by the equation

$$
\alpha=\frac{\Delta L / L}{\Delta T}
$$

Solving for $\Delta L$ gives

$$
\Delta L=\alpha L \Delta T
$$

Substituting in the given values we have

$$
\begin{aligned}
& \Delta L=\left(12 \times 10^{-6} K^{-1}\right)\left(5.0 \times 10^{6} \mathrm{~m}\right)\left(40^{\circ} \mathrm{C}-\left(-25^{\circ} \mathrm{C}\right)\right) \\
& \Delta L=3900 \mathrm{~m}=3.9 \mathrm{~km}
\end{aligned}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

