Chapter 17 Problem 24^{\dagger}

Given

H_{2} at 75 K
SO_{2} at 350 K

Solution

Find the gas that has the faster moving molecules.
Use the relationship between kinetic energy and temperature.

$$
\frac{1}{2} m v^{2}=\frac{3}{2} k T
$$

Solving for velocity gives

$$
v=\sqrt{\frac{3 k T}{m}}
$$

The mass of the hydrogen gas is

$$
m_{H_{2}}=2 u\left(\frac{1.67 \times 10^{-27} \mathrm{~kg}}{1 u}\right)=3.34 \times 10^{-27} \mathrm{~kg}
$$

The velocity of the hydrogen gas is then

$$
v=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(75 \mathrm{~K})}{\left(3.34 \times 10^{-27} \mathrm{~kg}\right)}}=964 \mathrm{~m} / \mathrm{s}
$$

The mass of the sulfur dioxide is

$$
m_{\mathrm{SO}_{2}}=64 u\left(\frac{1.67 \times 10^{-27} \mathrm{~kg}}{1 u}\right)=1.07 \times 10^{-25} \mathrm{~kg}
$$

The velocity of the sulfur dioxide is

$$
v=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(350 \mathrm{~K})}{\left(1.07 \times 10^{-25} \mathrm{~kg}\right)}}=368 \mathrm{~m} / \mathrm{s}
$$

Comparing the velocities we have

$$
\frac{v_{\mathrm{H}_{2}}}{v_{\mathrm{SO}_{2}}}=\frac{964 \mathrm{~m} / \mathrm{s}}{368 \mathrm{~m} / \mathrm{s}}=2.62
$$

The hydrogen gas is travelling at 2.62 times the speed of the sulfur dioxide gas.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

