Chapter 17 Problem $18{ }^{\dagger}$

Given

$T=350 K$
$V=8.5 L=8.5 \times 10^{-3} \mathrm{~m}^{3}$
$P=180 k P a=1.80 \times 10^{5} P a$
$R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Solution

How many molecules are in the sample?
The ideal gas law states

$$
P V=n R T
$$

Find the number of moles

$$
\begin{aligned}
& n=\frac{P V}{R T}=\frac{\left(1.80 \times 10^{5} \mathrm{~Pa}\right)\left(8.5 \times 10^{-3} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(350 \mathrm{~K})} \\
& n=0.526 \mathrm{~mol}
\end{aligned}
$$

To find the number of molecules, multiple the number of moles by Avagadro's number.

$$
N=n N_{a}=(0.526 \mathrm{~mol})\left(6.02 \times 10^{23}\right)=3.17 \times 10^{23} \text { molecules }
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

