Chapter 16 Problem $81{ }^{\dagger}$

Given

$T_{c}=-15^{\circ} \mathrm{C}$
$T_{0}=20^{\circ} \mathrm{C}$
$C=6.5 \times 10^{6} \mathrm{~J} / \mathrm{K}$
$R=6.67 \mathrm{mK} / W=0.00667 \mathrm{~K} / \mathrm{W}$

Solution

Find the time for the house to cool to $0{ }^{\circ} \mathrm{C}$.
Equation 16.3 is

$$
Q=m c \Delta T
$$

The heat capacity given in the problem is a combination of the mass and the specific heat of the house. Therefore $C=m c$ and

$$
Q=C \Delta T
$$

Q is measured in Joules and we want to find the heat flow in watts. As a differential amount of heat, $d Q$, leaves the house, the temperature changes by a differential amount, $d T$. Therefore, the differential form of this equation is

$$
d Q=C d T
$$

If the change is occuring with respect to time, then the heat flow in watts is

$$
\frac{d Q}{d t}=C \frac{d T}{d t}
$$

Next take equation 16.5

$$
H=-k A \frac{\Delta T}{\Delta x}
$$

Thermal resistance is defined as $R=\Delta x /(k A)$. This equation becomes

$$
H=-\frac{\Delta T}{R}
$$

Replace the difference in temperature with the current temperature, T, and the outside temperature, T_{c}, and we have

$$
H=-\frac{T-T_{c}}{R}
$$

Remember that $H=d Q / d t$; therefore,

$$
-\frac{T-T_{c}}{R}=H=\frac{d Q}{d t}=C \frac{d T}{d t}
$$

or

$$
\begin{equation*}
-\frac{\left(T-T_{c}\right)}{C R}=\frac{d T}{d t} \tag{1}
\end{equation*}
$$

[^0]This is a first order differential equation and can be solved by u-substitution. Let

$$
\begin{aligned}
& u=T-T_{c} \\
& d u=d\left(T-T_{c}\right)=d T
\end{aligned}
$$

Substitute into equation 1

$$
-\frac{u}{C R}=\frac{d u}{d t}
$$

Separate the variables gives

$$
-\frac{d t}{C R}=\frac{d u}{u}
$$

Integrating both sides will introduce an arbitrary constant and the result is

$$
-\frac{t}{C R}+D=\ln (u)
$$

Back substitute for u

$$
\begin{equation*}
-\frac{t}{C R}+D=\ln \left(T-T_{c}\right) \tag{2}
\end{equation*}
$$

Exponentiate each side

$$
e^{-t / C R+D}=T-T_{c}
$$

Simplify

$$
e^{-t / C R} \cdot e^{D}=T-T_{c}
$$

The temperature at any particular time is

$$
T=T_{c}+G e^{-t / C R}
$$

where $G=e^{D}$. This is the solution to Newton's law of cooling. This looks similar to decay problems with a time constant of $C R$. At $t=0, T=T_{0}$, then

$$
T_{0}=T_{c}+G e^{-0 / C R}=T_{c}+G
$$

Solving for G gives

$$
G=T_{0}-T_{c}=20^{\circ} \mathrm{C}-\left(-15^{\circ} \mathrm{C}\right)=35^{\circ} \mathrm{C}
$$

Since $G=e^{D}$, then

$$
\ln (G)=\ln \left(e^{D}\right)=D
$$

Therefore,

$$
D=\ln \left(35^{\circ} C\right)
$$

Using equation 2 solve for time when $T=0^{\circ} \mathrm{C}$.

$$
-\frac{t}{C R}=\ln \left(T-T_{c}\right)-D
$$

$$
t=-C R\left[\ln \left(T-T_{c}\right)-D\right]
$$

Substitute in the appropriate values gives

$$
\begin{aligned}
& t=-\left(6.5 \times 10^{6} \mathrm{~J} / \mathrm{K}\right)(0.00667 \mathrm{~K} / \mathrm{W})\left[\ln \left(0{ }^{\circ} \mathrm{C}-\left(-15^{\circ} \mathrm{C}\right)-\ln \left(35^{\circ} \mathrm{C}\right)\right]\right. \\
& t=-\left(6.5 \times 10^{6} \mathrm{~J} / \mathrm{K}\right)(0.00667 \mathrm{~K} / \mathrm{W})\left[\ln \left(15^{\circ} \mathrm{C}\right)-\ln \left(35^{\circ} \mathrm{C}\right)\right] \\
& t=36,700 \mathrm{~s}=10.2 \text { hours }
\end{aligned}
$$

Some of you are bothered by the fact that I took the logarithm of a number with units, and you should be. But look closely at the brackets on the right side of equation 3 .
Using the law of logarithms we get

$$
\ln \left(15^{\circ} \mathrm{C}\right)-\ln \left(35^{\circ} \mathrm{C}\right)=\ln \left(\frac{15^{\circ} \mathrm{C}}{35^{\circ} \mathrm{C}}\right)=\ln (0.429)
$$

This number is unitless and when substituted into equation 3 gives

$$
t=-\left(6.5 \times 10^{6} \mathrm{~J} / \mathrm{K}\right)(0.00667 \mathrm{~K} / W) \ln (0.429)=36,700 \mathrm{~s}
$$

which is the same answer.

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

