Chapter 16 Problem $55{ }^{\dagger}$

Given

$m=1500 \mathrm{~kg}$
$v=40 \mathrm{~km} / \mathrm{h}=11.1 \mathrm{~m} / \mathrm{s}$
$m_{\text {disk }}=5.0 \mathrm{~kg}$

Solution

Find the temperature change in the brake pads when the car is brought to a halt.
The kinetic energy of the car is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2}(1500 \mathrm{~kg})(11.1 \mathrm{~m} / \mathrm{s})^{2}=92408 \mathrm{~J}
$$

Now use the heat capacity equation

$$
\Delta Q=m c \Delta T
$$

The disks are made of steel, which has a specific heat of $502 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. The total mass of the disks is 20.0 kg . Solving for DeltaT gives

$$
\Delta T=\frac{\Delta Q}{m c}=\frac{92408 \mathrm{~J}}{(20.0 \mathrm{~kg})(502 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})}=9.2 \mathrm{~K}
$$

