Chapter 16 Problem $45{ }^{\dagger}$

Given

1 gram fat $=9 \mathrm{kcal}$
$m=78 \mathrm{~kg}$
$x=26.2 \mathrm{mi}$
$1 \mathrm{mi}=125 \mathrm{kcal}$

Solution

Find the mass loss for running a marathon assuming 100% efficiency.
From the information provided this becomes a conversion problem. We will convert the original distance into kcal consumed and in turn convert kcal into grams of fat.

$$
26.2 \mathrm{mi}\left(\frac{125 \mathrm{kcal}}{1 \mathrm{mi}}\right)\left(\frac{1 \mathrm{gram} \mathrm{fat}}{9 \mathrm{kcal}}\right)=364 \mathrm{grams}
$$

364 grams of fat would be consumed. Converting this to ounces gives us

$$
364 g\left(\frac{1 \mathrm{~kg}}{1000 g}\right)\left(\frac{1 \mathrm{lb}}{0.454 \mathrm{~kg}}\right)\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=12.8 o z
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

