Chapter 16 Problem 33^{\dagger}

Given

$l=12 m$
$w=8.0 \mathrm{~m}$
$\Delta x=23 \mathrm{~cm}=0.23 \mathrm{~m}$
$T_{i}=20^{\circ} \mathrm{C}$
$T_{g}=10^{\circ} \mathrm{C}$
$k_{\text {concrete }}=1 \mathrm{~W} / \mathrm{m} \mathrm{K}$

Solution

Find the heat flow into the ground.
The formula for heat loss due to conduction is

$$
H=-k A \frac{\Delta T}{\Delta x}
$$

The area of the floor is just the length times the width. Therefore, our equation becomes

$$
H=-k l w \frac{\left(T_{g}-T_{i}\right)}{\Delta x}
$$

Substituting in the known values gives us

$$
\begin{aligned}
& H=-(1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(12 \mathrm{~m})(8.0 \mathrm{~m}) \frac{\left(10^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)}{(0.23 \mathrm{~m})} \\
& H=4170 \mathrm{~W}=4.17 \mathrm{~kW}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

