Chapter 16 Problem $27{ }^{\dagger}$

Given

$m=350 \mathrm{~g}=0.350 \mathrm{~kg}$
$\Delta T=15 \mathrm{~K}$
$\Delta Q=2.52 k J=2520 J$

Solution

a) Find the heat capacity of the wrench.

Heat capacity, C, can be found from

$$
\Delta Q=C \Delta T
$$

Solving for C gives

$$
C=\frac{\Delta Q}{\Delta T}=\frac{2520 \mathrm{~J}}{15 \mathrm{~K}}=168 \mathrm{~J} / \mathrm{K}
$$

b) Find the specific heat of the metal.

Since

$$
\Delta Q=m c \Delta T
$$

then

$$
\begin{aligned}
& c=\frac{\Delta Q}{m \Delta T} \\
& c=\frac{2520 \mathrm{~J}}{(0.350 \mathrm{~kg})(15 \mathrm{~K})}=480 \mathrm{~J} / \mathrm{kgK}
\end{aligned}
$$

Notice that this is the same as taking the heat capacity and dividing by the mass of the wrench.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

