Chapter 38 Problem $65{ }^{\dagger}$

Given

$4 p \rightarrow \mathrm{He}+27 \mathrm{MeV}$
$m_{\text {Sun }}=2.0 \times 10^{30} \mathrm{~kg}$

Solution

a) At what rate does the Sun consume protons to produce a power of $4 \times 10^{26} \mathrm{~W}$?

This is basically a unit conversion problem. We know the number of protons to generate a certain amount of energy. The energy is given in electron-volts. This needs to be converted into joules. Also remember that a watt is the same as joules per second. Therefore,

$$
P=4 \times 10^{26} \frac{J}{s}\left(\frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}\right)\left(\frac{4 \mathrm{p}}{27 \times 10^{6} \mathrm{eV}}\right)=3.70 \times 10^{38} \mathrm{p} / \mathrm{s}
$$

b) Find the length of the Sun's present phase if the original amount of hydrogen is 71% and the phase ends when 10% of the hydrogen is consumed.

First find the original mass of hydrogen and then take 10% of that value. This gives

$$
m_{H}=(0.71)\left(2.0 \times 10^{30} \mathrm{~kg}\right)=1.42 \times 10^{30} \mathrm{~kg}
$$

Hydrogen consumed by the end of the present phase is

$$
\Delta H=(0.10)\left(1.42 \times 10^{30} \mathrm{~kg}\right)=1.42 \times 10^{29} \mathrm{~kg}
$$

Now convert this value into the number of hydrogen atoms, which is also the number of protons involved in the fusion reaction.

$$
\Delta H=1.42 \times 10^{29} \mathrm{~kg}\left(\frac{1 \mathrm{p}}{1.67 \times 10^{-27} \mathrm{~kg}}\right)=8.50 \times 10^{55} \mathrm{p}
$$

Since power is energy per time, then

$$
\begin{aligned}
& P=\frac{E}{t} \\
& t=\frac{E}{P}
\end{aligned}
$$

From the calculations done above, the energy is in terms of protons and the power is in terms of protons per second. Then the time is

$$
t=\frac{8.50 \times 10^{55} \mathrm{p}}{3.70 \times 10^{38} \mathrm{p} / \mathrm{s}}=2.30 \times 10^{17} \mathrm{~s}
$$

This comes out to 7.3×10^{9} yrs or 7.3 billion years.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

