Chapter 38 Problem $23{ }^{\dagger}$

Given

$t_{1 / 2}=29$ years

Solution

a) Find the time for 99% of the strontium- 90 to decay.

The rate of radioactive decay is calculated using the equation

$$
N=N_{o} e^{-\lambda t}
$$

Taking this equation and solving for time gives

$$
\begin{aligned}
& \frac{N}{N_{o}}=e^{-\lambda t} \\
& \ln \left(\frac{N}{N_{0}}\right)=-\lambda t \\
& t=\frac{-1}{\lambda} \ln \left(\frac{N}{N_{0}}\right)
\end{aligned}
$$

The relationship between half-life and the decay constant is

$$
t_{1 / 2}=\frac{\ln 2}{\lambda}
$$

Solving for the decay constant gives

$$
\begin{aligned}
& \lambda=\frac{\ln 2}{t_{1 / 2}} \\
& \lambda=\frac{\ln 2}{29 y r}=0.0239 y r^{-1}
\end{aligned}
$$

When 99% of the strontium- 90 is decayed the ratio of present amount, N, to original amount, N_{0}, is 0.01 . The time for 99% decay is then

$$
t=\frac{-1}{0.0239 y r^{-1}} \ln (0.01)=193 y r
$$

b) Find the time for 99.9% of the strontium- 90 to decay.

Using the same development as part a, use a ratio of $N / N_{0}=0.001$.

$$
t=\frac{-1}{0.0239 y r^{-1}} \ln (0.001)=289 y r
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

