Chapter 36 Problem $51{ }^{\dagger}$

Given

$\lambda=30.0 \mu \mathrm{~m}$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$P=2.0 \mathrm{~mW}$

Solution

Find the number of transitions made in the laser every second.
Since power is energy per time, the energy released by the laser each second is 2.0 mJ .
The energy in each transition is given by the relationship

$$
E=\frac{h c}{\lambda}
$$

Substituting in the the appropriate values gives

$$
E=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{30.0 \times 10^{-6} \mathrm{~m}}=6.63 \times 10^{-21} \mathrm{~J}
$$

Therefore, the number of transitions is given by

$$
\begin{aligned}
& \text { transitions }=\left(2.0 \times 10^{-3} J\right)\left(\frac{1 \text { trans }}{6.63 \times 10^{-21} J}\right) \\
& \text { transitions }=3.02 \times 10^{17} \text { trans }
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

