Chapter 35 Problem 32^{\dagger}

Given
$L=25 \mathrm{~nm}=25 \times 10^{-9} \mathrm{~m}$

Solution

a) Find the wavelengths of the photons emitted for the transition $n=2$ to $n=1$.

For each part of this problem, it is necessary to calculate the energy of the transition followed by a calculation of wavelength. The energy of transition is

$$
\Delta E=E_{f}-E_{i}=\frac{h^{2} n_{f}^{2}}{8 m L^{2}}-\frac{h^{2} n_{i}^{2}}{8 m L^{2}}=\frac{h^{2}}{8 m L^{2}}\left(n_{f}^{2}-n_{i}^{2}\right)
$$

To eliminate repeated calculations, for this problem

$$
\begin{align*}
& \Delta E=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(25 \times 10^{-9} \mathrm{~m}\right)^{2}}\left(n_{f}^{2}-n_{i}^{2}\right) \\
& \Delta E=\left(9.65 \times 10^{-23} \mathrm{~J}\right)\left(n_{f}^{2}-n_{i}^{2}\right) \tag{1}
\end{align*}
$$

Also the equation for calculating wavelength can be derived from the photon energy equation.

$$
\begin{align*}
& E=\frac{h c}{\lambda} \\
& \lambda=\frac{h c}{E} \tag{2}
\end{align*}
$$

Since energy lost by the electron is an energy gain by the photon, the answer using equation (1) will be negative, but we will substitute in a positive value for energy into equation (2).

Now let's solve part a) by substituting in the initial and final states into equation (1).

$$
\Delta E=\left(9.65 \times 10^{-23} J\right)\left(1^{2}-2^{2}\right)=-2.895 \times 10^{-22} J
$$

Substitute this energy into equation (2) to get the wavelength

$$
\lambda=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.895 \times 10^{-22} \mathrm{~J}}=6.87 \times 10^{-4} \mathrm{~m}=0.69 \mathrm{~mm}
$$

b) Find the wavelengths of the photons emitted for the transition $n=20$ to $n=19$.

Substitute the initial and final states into equation (1).

$$
\Delta E=\left(9.65 \times 10^{-23} J\right)\left(19^{2}-20^{2}\right)=-3.76 \times 10^{-21} J
$$

Substitute this energy into equation (2) to get the wavelength

$$
\lambda=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{3.76 \times 10^{-21} \mathrm{~J}}=5.28 \times 10^{-5} \mathrm{~m}=53 \mu \mathrm{~m}
$$

c) Find the wavelengths of the photons emitted for the transition $n=100$ to $n=1$.

Substitute the initial and final states into equation (1).

$$
\Delta E=\left(9.65 \times 10^{-23} J\right)\left(1^{2}-100^{2}\right)=-9.65 \times 10^{-19} J
$$

Substitute this energy into equation (2) to get the wavelength

$$
\lambda=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{9.65 \times 10^{-19} \mathrm{~J}}=2.06 \times 10^{-7} \mathrm{~m}=210 \mathrm{~nm}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

