Chapter 35 Problem $29{ }^{\dagger}$

Given

$\lambda=950 \mathrm{~nm}=950 \times 10^{-9} \mathrm{~m}$

Solution

What are the dimensions of a cubical box with an electron in it?
The energy of the photon emitted in the transition to the ground state is

$$
E=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{950 \times 10^{-9} \mathrm{~m}}=2.09 \times 10^{-19} \mathrm{~J}
$$

The energy states for a particle in a cubical box are

$$
E_{n_{x} n_{y} n_{z}}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

The ground state energy is

$$
E_{111}=\frac{h^{2}}{8 m L^{2}}\left(1^{2}+1^{2}+1^{2}\right)=\frac{3 h^{2}}{8 m L^{2}}
$$

The next excited state has an energy of

$$
E_{211}=\frac{h^{2}}{8 m L^{2}}\left(2^{2}+1^{2}+1^{2}\right)=\frac{6 h^{2}}{8 m L^{2}}
$$

Therefore the energy of transition is

$$
E=E_{f}-E_{i}=E_{111}-E_{211}=\frac{3 h^{2}}{8 m L^{2}}-\frac{6 h^{2}}{8 m L^{2}}=-\frac{3 h^{2}}{8 m L^{2}}
$$

This energy loss is an energy gain by the photon. Dropping the negative sign and solving for L gives

$$
\begin{aligned}
L^{2} & =\frac{3 h^{2}}{8 m E} \\
L & =\sqrt{\frac{3 h^{2}}{8 m E}}
\end{aligned}
$$

Substituting in the appropriate values gives

$$
L=\sqrt{\frac{3\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.09 \times 10^{-19} \mathrm{~J}\right)}}=9.3 \times 10^{-10} \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

