Chapter 35 Problem $26{ }^{\dagger}$

Given

$m=1.0 \mathrm{~g}=1.0 \times 10^{-3} \mathrm{~kg}$
$k=80 \mathrm{~N} / \mathrm{m}$

Solution

Find the separation between the energy levels for a harmonic oscillator, which is a mass on a spring.
The angular frequency of the mass on a spring oscillator is given by the formula

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{80 \mathrm{~N} / \mathrm{m}}{1.0 \times 10^{-3} \mathrm{~kg}}}=283 \mathrm{rad} / \mathrm{s}
$$

The frequency of this oscillator is

$$
f=\frac{\omega}{2 \pi}=\frac{283 \mathrm{rad} / \mathrm{s}}{2 \pi}=45.0 \mathrm{~Hz}
$$

The allowed energy levels of a harmonic oscillator are

$$
E_{n}=h f\left(n+\frac{1}{2}\right)
$$

Therefore, the difference between adjacent energy levels is

$$
\Delta E=h f
$$

Therefore, the energy difference is

$$
\Delta E=\left(6.63 \times 10^{-34} J \cdot s\right)(45.0 \mathrm{~Hz})=2.98 \times 10^{-32} \mathrm{~J}
$$

This quantization is so small it is not measurable.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

