Chapter 35 Problem $21{ }^{\dagger}$

Given

$L=15 \mathrm{fm}=15 \times 10^{-15} \mathrm{~m}$

Solution

Find the minimum energy of an alpha particle in a uranium nucleus.
Treat the nucleas as if it were a 1D infinite square well. The energy levels of an infinite square well are given by the formula

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

The ground-state corresponds to $n=1$. The mass of the alpha particle is four times the mass of the proton. Therefore,

$$
E_{1}=\frac{(1)^{2}\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8(4)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(15 \times 10^{-15} \mathrm{~m}\right)^{2}}=3.66 \times 10^{-14} \mathrm{~J}
$$

Converting to electron-volts gives

$$
E_{1}=228 \mathrm{keV}
$$

