Chapter 35 Problem $15{ }^{\dagger}$

Given

$L=10.0 \mathrm{~nm}=10.0 \times 10^{-9} \mathrm{~m}$

Solution

Find the ground-state energy of an electron in an infinite square well.
The energy levels of an infinite square well are given by the formula

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

The ground-state corresponds to $n=1$. Substituting in the appropriate values gives

$$
E_{1}=\frac{(1)^{2}\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(10.0 \times 10^{-9} \mathrm{~m}\right)^{2}}=6.03 \times 10^{-22} \mathrm{~J}
$$

Convert this to electron volts gives

$$
E_{1}=\left(6.03 \times 10^{-22} J\right)\left(\frac{1.0 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}\right)=3.77 \times 10^{-3} \mathrm{eV}=3.77 \mathrm{meV}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

