Chapter 34 Problem $65{ }^{\dagger}$

Given

$\Delta x=20 \mathrm{~nm}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Solution

Find the minimum speed of an electron trapped in a quantum well of width 20 nm .
Begin with the Heisenberg Uncertainty Principle

$$
\Delta x \Delta p \geq \frac{h}{2 \pi}
$$

If you use the distinction that the direction of the momentum is unknown, then $\Delta p=p-(-p)=2 p$. See example 34.6 in the textbook. Applying this to Heisenberg's Uncertainty Principles gives

$$
\begin{aligned}
& \Delta x 2 p \geq \frac{h}{2 \pi} \\
& \Delta x p \geq \frac{h}{4 \pi}
\end{aligned}
$$

Often when Heisenberg's Uncertainty Principle is expressed, the distinction between left and right travelling particles is taken into account and the equation is

$$
\Delta x \Delta p \geq \frac{h}{4 \pi}
$$

I will use the later form. Now momentum is $m v$. Therefore, the minimum velocity can not be known to be less than the uncertainty of the velocity. Therefore,

$$
\begin{aligned}
& \Delta x m \Delta v=\frac{h}{4 \pi} \\
& \Delta v=\frac{h}{4 \pi m \Delta x}
\end{aligned}
$$

Substituting in the provided values gives

$$
\Delta v=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{4 \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(20 \times 10^{-9} \mathrm{~m}\right)}=2900 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

