Chapter 18 Problem $37{ }^{\dagger}$

Given

$P_{A}=60 k P a$

Solution

a) Find the pressure at B.

From the ideal gas law

$$
P V=n R T
$$

Since the process A-B is isothermal, the right hand side of the equation is a constant. Therefore,

$$
P_{A} V_{A}=P_{B} V_{B}
$$

Solving for the pressure at B gives us

$$
P_{B}=\frac{V_{A}}{V_{B}} P_{A}=\frac{5.0 L}{1.0 L}\left(6.0 \times 10^{4} \mathrm{~Pa}\right)=3.0 \times 10^{5} \mathrm{~Pa}=300 \mathrm{kPa}
$$

b) Find the net work done on the gas.

The work done for the isothermal process is

$$
W=-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

Since $n R T$ is constant, we can replace it with $P_{A} V_{A}$.

$$
\begin{aligned}
& W=-P_{A} V_{A} \ln \left(\frac{V_{B}}{V_{A}}\right)=-\left(6.0 \times 10^{4} \mathrm{~Pa}\right)\left(5.0 \times 10^{-3} \mathrm{~m}^{3}\right) \ln \left(\frac{1.0 L}{5.0 L}\right) \\
& W=483 \mathrm{~J}
\end{aligned}
$$

The work done for the isochoric process is $0 J$ since the volume doesn't change. The work done for the isobaric process is

$$
\begin{aligned}
& W=-P_{C}\left(V_{A}-V_{C}\right)=-\left(6.0 \times 10^{4} P a\right)\left(5 \times 10^{-3} \mathrm{~m}^{3}-1 \times 10^{-3} \mathrm{~m}^{3}\right) \\
& W=-240 \mathrm{~J}
\end{aligned}
$$

The net work is the sum of the work done for all three processes. This net work is then

$$
W=483 J+0 J-240 J=243 J
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

