Chapter 16 Problem $65{ }^{\dagger}$

Given

$D=15 \mathrm{~cm}=0.15 \mathrm{~m}$
$r=0.075 \mathrm{~m}$
$l=65 \mathrm{~cm}=0.65 \mathrm{~m}$
$P=34 k W=34000 W$

Solution

What is the temperature of the log?
First find the surface area of the log. Each end of the log will have the area of a circle.

$$
A_{\text {end }}=\pi r^{2}=\pi(0.075 m)^{2}=0.0177 \mathrm{~m}^{2}
$$

The side of the cylinder has an area of

$$
A_{\text {side }}=2 \pi r l=2 \pi(0.075 \mathrm{~m})(0.65 \mathrm{~m})=0.306 \mathrm{~m}^{2}
$$

The total surface area of the \log is then

$$
A=A_{\text {side }}+2 A_{\text {end }}=\left(0.306 \mathrm{~m}^{2}\right)+2\left(0.0177 \mathrm{~m}^{2}\right)=0.341 \mathrm{~m}^{2}
$$

From the Stefan-Boltzmann equation we have

$$
P=\epsilon \sigma A T^{4}
$$

Assuming emissivity is 1 , then the temperature is

$$
T=\left(\frac{P}{\sigma A}\right)^{1 / 4}=\left(\frac{34000 W}{\left(5.67 \times 10^{-8} W / m^{2} \cdot K^{4}\right)\left(0.341 m^{2}\right)}\right)^{1 / 4}=1150 \mathrm{~K}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

