## Given

$I=1.75 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Solution
Find the wavelength emitted going from $l=5$ to $l=4$.
The rotational energy goes as

$$
E_{r o t}=\frac{\hbar^{2}}{2 I} l(l+1)
$$

Going from $l=5$ to $l=4$ results in an energy change of

$$
\Delta E=E_{4}-E_{5}=\frac{\hbar^{2}}{2 I} 4(4+1)-\frac{\hbar^{2}}{2 I} 5(5+1)=\frac{\hbar^{2}}{2 I} 20-\frac{\hbar^{2}}{2 I} 30=-\frac{\hbar^{2}}{2 I} 10
$$

This loss of energy is an energy gain by the photon. The energy of a photon is given by

$$
E=\frac{h c}{\lambda}
$$

Set this equal to the energy lost by the molecule gives

$$
\frac{\hbar^{2}}{2 I} 10=\frac{h c}{\lambda}
$$

Replace $\hbar$ with $h / 2 \pi$ and solving for wavelength gives

$$
\begin{aligned}
& \frac{h^{2}}{8 \pi^{2} I} 10=\frac{h c}{\lambda} \\
& \lambda=\frac{h c 8 \pi^{2} I}{10 h^{2}}=\frac{4 \pi^{2} c I}{5 h}
\end{aligned}
$$

Substitute in the appropriate values gives

$$
\lambda=\frac{4 \pi^{2}\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.75 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)}{5\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)}=6.25 \times 10^{-5} \mathrm{~m}=62.5 \mu \mathrm{~m}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

