Chapter 36 Problem $32{ }^{\dagger}$

Solution

Find the energy difference between the 4 f and 3 p levels in sodium.
The spectral line associated with the $4 f \rightarrow 3 p$ transition has a wavelength of $\lambda=567.0 \mathrm{~nm}$. The relationship between wavelength and energy for a photon is

$$
E=\frac{h c}{\lambda}
$$

Since the energy of the photon matches the energy of the transition, the energy between the 4 f and 3 p levels is

$$
E=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{567.0 \times 10^{-9} \mathrm{~m}}=3.503 \times 10^{-19} \mathrm{~J}
$$

Converting this to electron volts gives

$$
E=2.187 \mathrm{eV}
$$

(All calculations were done with four significant digits.)

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

