## Chapter 35 Problem $53{ }^{\dagger}$

## Solution

Find the quantum state that corresponds to a 0.303 probability of finding the particle in the left-hand quarter of an infinite square well.
The normalized wave function for a particle in an infinite square well is

$$
\psi=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)
$$

To find the probability integrate the square of the wave function over the interval of interest.

$$
\begin{aligned}
& P(x)=\psi^{2} d x \\
& P(\text { left quarter })=\int_{0}^{L / 4}\left(\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)\right)^{2} d x \\
& P(\text { left quarter })=\int_{0}^{L / 4} \frac{2}{L} \sin ^{2}\left(\frac{n \pi}{L} x\right) d x \\
& P(\text { left quarter })=\frac{2}{L} \int_{0}^{L / 4} \frac{1}{2}\left(1-\cos \left(\frac{2 n \pi}{L} x\right)\right) d x \\
& P(\text { left quarter })=\frac{1}{L}\left(x-\left.\frac{\sin \left(\frac{2 n \pi}{L} x\right)}{2 n \pi / L}\right|_{0} ^{L / 4}\right. \\
& P(\text { left quarter })=\frac{1}{L}\left(\frac{L}{4}-\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi}{L} \frac{L}{4}\right)-0+\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi}{L} 0\right)\right) \\
& P(\text { left quarter })=\frac{1}{L}\left(\frac{L}{4}-\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi}{4}\right)-0+0\right) \\
& P(\text { left quarter })=\frac{1}{4}-\frac{1}{2 n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

If $n$ is a multiple of 2 , the sine function will give a value of zero and the probability will be $1 / 4$ or $25 \%$ (as you would expect. If the value of $n$ is odd, the following probabilities are calculated.

$$
\begin{array}{ll}
n=1 & P(\text { left quarter })=\frac{1}{4}-\frac{1}{2(1) \pi} \sin \left(\frac{(1) \pi}{2}\right)=0.0908 \\
n=3 & P(\text { left quarter })=\frac{1}{4}-\frac{1}{2(3) \pi} \sin \left(\frac{(3) \pi}{2}\right)=0.303 \\
n=5 & P(\text { left quarter })=\frac{1}{4}-\frac{1}{2(5) \pi} \sin \left(\frac{(5) \pi}{2}\right)=0.218 \\
n=7 & P(\text { left quarter })=\frac{1}{4}-\frac{1}{2(7) \pi} \sin \left(\frac{(7) \pi}{2}\right)=0.273
\end{array}
$$

The answer is $n=3$. The additional calculations were included so you could see that as $n_{\text {odd }} \rightarrow \infty$, the probability $\rightarrow 0.25$.

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

