Chapter 35 Problem $12{ }^{\dagger}$

Given

Solution

Find the value of A that normalizes the function.
If a wave function is normalized, the following should be true.

$$
\int_{-\infty}^{\infty} \psi^{2} d x=1
$$

Since the function for this curve is discontinuous, it must be defined for two intervals. The first interval goes from 0 to $L / 2$. The curve has a slope of $A /(L / 2)$ or $2 A / L$. Since the y-intercept is zero, the equation for the first interval is

$$
\psi_{1}(x)=\frac{2 A x}{L} \quad 0 \leq x<L / 2
$$

The second interval has a slope of $-2 A / L$ and has a y-intercept of $2 A$. Therefore, its equation is

$$
\psi_{2}(x)=2 A-\frac{2 A x}{L} \quad L / 2 \leq x \leq L
$$

Now square the wave function and integrate over its appropriate domain. Notice that the wave function has a value of zero outside of the given domain. Therefore,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \psi^{2} d x=\int_{0}^{L / 2} \psi_{1}^{2}(x) d x+\int_{L / 2}^{L} \psi_{2}^{2}(x) d x=1 \\
& \int_{0}^{L / 2}\left(\frac{2 A x}{L}\right)^{2} d x+\int_{L / 2}^{L}\left(2 A-\frac{2 A x}{L}\right)^{2} d x=1 \\
& \int_{0}^{L / 2}\left(\frac{4 A^{2} x^{2}}{L^{2}}\right) d x+\int_{L / 2}^{L}\left(4 A^{2}-\frac{8 A^{2} x}{L}+\frac{4 A^{2} x^{2}}{L^{2}}\right) d x=1 \\
& \left(\left.\frac{4 A^{2} x^{3}}{3 L^{2}}\right|_{0} ^{L / 2}+\left(4 A^{2} x-\frac{8 A^{2} x^{2}}{2 L}+\left.\frac{4 A^{2} x^{3}}{3 L^{2}}\right|_{L / 2} ^{L}=1\right.\right. \\
& \left(\frac{4 A^{2}(L / 2)^{3}}{3 L^{2}}-0\right)+\left(4 A^{2} L-\frac{8 A^{2} L^{2}}{2 L}+\frac{4 A^{2} L^{3}}{3 L^{2}}-4 A^{2}(L / 2)+\frac{8 A^{2}(L / 2)^{2}}{2 L}-\frac{4 A^{2}(L / 2)^{3}}{3 L^{2}}\right)=1
\end{aligned}
$$

[^0]$$
\left(\frac{A^{2} L}{6}-0\right)+\left(4 A^{2} L-4 A^{2} L+\frac{4 A^{2} L}{3}-2 A^{2} L+A^{2} L-\frac{A^{2} L}{6}\right)=1
$$

Notice several terms cancel each other and others easily combine without getting a common denominator.

$$
\frac{4 A^{2} L}{3}-A^{2} L=1
$$

Now get a common denominator and solve for A.

$$
\begin{aligned}
& \frac{4 A^{2} L}{3}-\frac{3 A^{2} L}{3}=1 \\
& \frac{4 A^{2} L-3 A^{2} L}{3}=1 \\
& \frac{A^{2} L}{3}=1 \\
& A^{2}=\frac{3}{L}
\end{aligned}
$$

The value of A that normalizes the function is

$$
A=\sqrt{\frac{3}{L}}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

