Chapter 34 Problem $30{ }^{\dagger}$

Given

$\lambda=1 \mathrm{~mm}=1.0 \times 10^{-3} \mathrm{~m}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Solution

Find the speed of the electron that gives a wavelength of 1 mm .
The De Broglie wavelength is given by

$$
\lambda=\frac{h}{p}=\frac{h}{m \cdot v}
$$

Solving for velocity gives

$$
v=\frac{h}{m \cdot \lambda}
$$

Substituting in the provided values gives

$$
v=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right) \cdot\left(1.0 \times 10^{-3} \mathrm{~m}\right)}=0.728 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

