Chapter 33 Problem $15{ }^{\dagger}$

Given

$x^{\prime}=50 l y$
$v=0.75 c$

Solution

Find the distance between the two stars for those in the spaceship.
The Lorentz transform relating the observed displacements in the two coordinate frames is

$$
x^{\prime}=\gamma(x-v t)
$$

Since we are considering the distance just as the trip begins we will assume that $t=0 \mathrm{~s}$. This now gives

$$
x^{\prime}=\gamma \cdot x
$$

The primed variables are those in the coordinate frame at rest with the measured value while the non-primed variables are those in the coordinate frame of the moving observer. Therefore, x^{\prime} is the measured distance between the stars in the star's rest frame and we want to find the distance, x, in the moving frame of the spaceship. Solving for x gives

$$
x=\frac{x^{\prime}}{\gamma}=\frac{x^{\prime}}{\frac{1}{\sqrt{1-v^{2} / c^{2}}}}=\sqrt{1-v^{2} / c^{2}} x^{\prime}
$$

Substituting in the provided values gives

$$
x=\sqrt{1-(0.75 c)^{2} / c^{2}}(50 l y)=33.1 l y
$$

The distance to the spaceship is considerably shorter than the distance measured at rest with respect to the stars.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

