

Given

$B C$ is isothermal

Solution

Calculate the entropy change for a full cycle and show that it equals zero for this reversible process.
5 moles is given for this problem, but as long as the number of moles stays constant, it doesn't matter how many moles you have. Therefore, I will use n to represent the number of moles. Break the cycle into 3 steps. A-B is isochoric. No work is done and heat flow is equal to the change in internal energy. Therefore, the heat flow is

$$
\Delta Q=n C_{V} \Delta T
$$

For infinitesimal temperature changes the heat flow is

$$
d Q=n C_{V} d T
$$

Assuming a monatomic gas,

$$
d Q=\frac{3}{2} n R d T
$$

The change in entropy is then

$$
\Delta S_{A B}=\int_{A}^{B} \frac{d Q}{T}=\int_{T_{A}}^{T_{B}} \frac{\frac{3}{2} n R d T}{T}=\frac{3}{2} n R \ln \left(\frac{T_{B}}{T_{A}}\right)
$$

$B-C$ is isothermal. Therefore heat flow equals the work done by the gas.

$$
d Q=d W=P d V
$$

Calculating the change in entropy we get

$$
\Delta S_{B C}=\int_{B}^{C} \frac{d Q}{T}=\int_{B}^{C} \frac{P d V}{T}
$$

[^0]From the ideal gas law

$$
\frac{P}{T}=\frac{n R}{V}
$$

Therefore,

$$
\Delta S_{B C}=\int_{V_{B}}^{V_{C}} \frac{n R d V}{V}=n R \ln \left(\frac{V_{C}}{V_{B}}\right)=n R \ln (3)
$$

$C-A$ is isobaric. The heat flow in in this process is the change in internal energy plus the work done. When both of these are considered, the heat flow is

$$
\Delta Q=n C_{P} \Delta T
$$

For a monatomic gas,

$$
d Q=\frac{5}{2} n R d T
$$

The change in entropy is then

$$
\Delta S_{C A}=\int_{C}^{A} \frac{d Q}{T}=\int_{T_{C}}^{T_{A}} \frac{\frac{5}{2} n R d T}{T}=\frac{5}{2} n R \ln \left(\frac{T_{A}}{T_{C}}\right)
$$

Adding all the entropy changes together gives

$$
\begin{align*}
& \Delta S=\Delta S_{A B}+\Delta S_{B C}+\Delta S_{C A} \\
& \Delta S=\frac{3}{2} n R \ln \left(\frac{T_{B}}{T_{A}}\right)+n R \ln (3)+\frac{5}{2} n R \ln \left(\frac{T_{A}}{T_{C}}\right) \tag{1}
\end{align*}
$$

By the ideal gas law $T_{A}=\frac{P_{A} V_{A}}{n R}, T_{B}=\frac{P_{B} V_{B}}{n R}$, and $T_{C}=\frac{P_{C} V_{C}}{n R}$ Therefore

$$
\begin{aligned}
& \frac{T_{B}}{T_{A}}=\frac{\frac{P_{B} V_{B}}{n R}}{\frac{P_{A} V_{A}}{n R}}=\frac{P_{B} V_{B}}{P_{A} V_{A}}=\frac{3 P_{0} V_{0}}{P_{0} V_{0}}=3 \\
& \frac{T_{A}}{T_{C}}=\frac{\frac{P_{A} V_{A}}{n R}}{\frac{P_{C} V_{C}}{n R}}=\frac{P_{A} V_{A}}{P_{C} V_{C}}=\frac{P_{0} V_{0}}{P_{0} 3 V_{0}}=\frac{1}{3}
\end{aligned}
$$

Now equation 1 becomes

$$
\begin{aligned}
& \Delta S=\frac{3}{2} n R \ln (3)+n R \ln (3)+\frac{5}{2} n R \ln \left(\frac{1}{3}\right) \\
& \Delta S=\frac{3}{2} n R \ln (3)+n R \ln (3)-\frac{5}{2} n R \ln (3)=0
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

