Chapter 19 Problem $43{ }^{\dagger}$

Given

$m=94,000 \mathrm{~kg}$
$T_{1}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K}$
$L_{f}=334 \mathrm{~kJ} / \mathrm{kg}$

Solution

Find the entropy change when melting ice and then heating the water.
The heat flow into the ice during melting is

$$
\begin{aligned}
\Delta Q & =m L_{f}=(94,000 \mathrm{~kg})(334 \mathrm{~kJ} / \mathrm{kg}) \\
\Delta Q & =3.14 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

The melting of the ice is at constant temperature. Therefore, the entropy change is

$$
\Delta S=\frac{\Delta Q}{T}=\frac{3.14 \times 10^{10} \mathrm{~J}}{273 \mathrm{~K}}=1.15 \times 10^{8} \mathrm{~J} / \mathrm{K}
$$

Since the temperature changes as the water is warming we must integrate to get the entropy change.

$$
\begin{equation*}
\Delta S=\int_{1}^{2} \frac{d Q}{T} \tag{1}
\end{equation*}
$$

The heat required to warm water is

$$
\Delta Q=m c \Delta T
$$

Therefore, for infinitesimal temperature changes

$$
\begin{equation*}
d Q=m c d T \tag{2}
\end{equation*}
$$

Substituting 2 into 1 and integrating gives

$$
\begin{aligned}
& \Delta S=\int_{T_{1}}^{T_{2}} \frac{m c d T}{T}=m c \ln \left(\frac{T_{2}}{T_{1}}\right) \\
& \Delta S=(94,000 \mathrm{~kg})(4184 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \left(\frac{288 \mathrm{~K}}{273 \mathrm{~K}}\right) \\
& \Delta S=2.10 \times 10^{7} \mathrm{~J} / \mathrm{K} \\
& \Delta S=\Delta S_{\text {melt }}+\Delta S_{\text {warm }} \\
& \Delta S_{t o t}=1.15 \times 10^{8} \mathrm{~J} / \mathrm{K}+2.10 \times 10^{7} \mathrm{~J} / \mathrm{K}=1.36 \times 10^{8} \mathrm{~J} / \mathrm{K} \\
& \Delta S_{\text {tot }}=136 \mathrm{MJ} / \mathrm{K}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

