Chapter 19 Problem $42{ }^{\dagger}$

Given

Figure 22-29
$P_{1}=8.000 \mathrm{~atm}=8.104 \times 10^{5} \mathrm{~Pa}$
$V_{1}=1.000 L=1.000 \times 10^{-3} \mathrm{~m}^{3}$
$P_{2}=4.000 \mathrm{~atm}=4.052 \times 10^{5} \mathrm{~Pa}$
$V_{2}=2.000 L=2.000 \times 10^{-3} \mathrm{~m}^{3}$
$P_{3}=2.050 \mathrm{~atm}=2.077 \times 10^{5} \mathrm{~Pa}$
$V_{3}=3.224 L=3.224 \times 10^{-3} \mathrm{~m}^{3}$
$P_{4}=4.100 \mathrm{~atm}=4.153 \times 10^{5} \mathrm{~Pa}$
$V_{4}=1.612 L=1.612 \times 10^{-3} \mathrm{~m}^{3}$
$n=0.20 \mathrm{~mol}$

Solution

a) Find the heat absorbed.

During the adiabatic processes (in red) no heat is exchanged with the surroundings. During the isothermal expansion (process 1 to 2) heat is absorbed and this is equal to the work since the temperature stays the same The work done during the isothermal expansion is

$$
\begin{equation*}
W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \tag{1}
\end{equation*}
$$

From the ideal gas law we know that

$$
\begin{equation*}
P V=n R T \tag{2}
\end{equation*}
$$

Replacing $n R T$ in equation 1 with equation 2 gives

$$
\begin{aligned}
& W=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& W=\left(8.10 \times 10^{5} \mathrm{~Pa}\right)\left(1.0 \times 10^{-3} \mathrm{~m}^{3}\right) \ln \left(\frac{2.0 \times 10^{-3} \mathrm{~m}^{3}}{1.0 \times 10^{-3} \mathrm{~m}^{3}}\right) \\
& W=561.5 \mathrm{~J}
\end{aligned}
$$

From the 1st law of thermodynamics the heat flow in is

$$
\Delta Q=\Delta U+W=0 J+561.5 J=561.5 J
$$

[^0]$$
Q_{H}=561.5 \mathrm{~J}
$$
b) Find the heat rejected.

During the isothermal compression (process 3 to 4) heat is rejected and is equal to the work done on the gas. Using equation 3 we have

$$
\begin{aligned}
& W=P_{3} V_{3} \ln \left(\frac{V_{4}}{V_{3}}\right) \\
& W=\left(2.077 \times 10^{5} \mathrm{~Pa}\right)\left(3.224 \times 10^{-3} \mathrm{~m}^{3}\right) \ln \left(\frac{1.612 \times 10^{-3} \mathrm{~m}^{3}}{3.224 \times 10^{-3} \mathrm{~m}^{3}}\right) \\
& W=-464.2 \mathrm{~J}
\end{aligned}
$$

From the 1st law of thermodynamics the heat flow in is

$$
\Delta Q=\Delta U+W=0 J-464.2 J=-464.2 J
$$

$$
Q_{C}=464.2 \mathrm{~J}
$$

c) Find the work done.

The work done is the difference between the heat absorbed and the heat rejected. This gives

$$
W=Q_{H}-Q_{C}=561.5 \mathrm{~J}-464.2 \mathrm{~J}=97.3 \mathrm{~J}
$$

d) Find the efficiency of the engine.

Efficiency is given by

$$
\begin{aligned}
& e=\frac{W}{Q_{H}} \times 100 \%=\frac{97.3 \mathrm{~J}}{561.5 \mathrm{~J}} \times 100 \% \\
& e=17.3 \%
\end{aligned}
$$

e) Find the minimum and maximum temperature.

From the ideal gas law the temperature at 1 is

$$
T_{1}=\frac{P_{1} V_{1}}{n R}=\frac{\left(8.104 \times 10^{5} \mathrm{~Pa}\right)\left(1.0 \times 10^{-3} \mathrm{~m}^{3}\right)}{(0.20 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=487.6 \mathrm{~K}
$$

The temperature at 3 is

$$
T_{3}=\frac{P_{3} V_{3}}{n R}=\frac{\left(2.077 \times 10^{5} \mathrm{~Pa}\right)\left(3.224 \times 10^{-3} \mathrm{~m}^{3}\right)}{(0.20 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=402.9 \mathrm{~K}
$$

The Carnot efficiency is then

$$
e=\left(1-\frac{T_{C}}{T_{H}}\right) \times 100 \%=\left(1-\frac{402.9 \mathrm{~K}}{487.6 \mathrm{~K}}\right) \times 100 \%=17.4 \%
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

