## Chapter 18 Problem $26{ }^{\dagger}$

## Given

$n_{O_{2}}=2.5 \mathrm{~mol}$
$n_{A r}=3.0 \mathrm{~mol}$

## Solution

Find the specific heats at constant volume and pressure for the mixture of these two gases.
Internal energy of the $O_{2}$ is

$$
\Delta U_{O 2}=n_{O 2} C_{V} \Delta T
$$

$O_{2}$ is a diatomic gas and, therefore, the value of $C_{V}$ is $5 / 2 R$.

$$
\Delta U_{O 2}=(2.5 \mathrm{~mol})\left(\frac{5}{2} R\right) \Delta T=6.25 R \Delta T
$$

Internal energy of the $A r$ is

$$
\Delta U_{A r}=n_{A r} C_{V} \Delta T
$$

$A r$ is a monatomic gas and, therefore, the value of $C_{V}$ is $3 / 2 R$.

$$
\Delta U_{A r}=(3.0 \mathrm{~mol})\left(\frac{3}{2} R\right) \Delta T=4.5 R \Delta T
$$

The internal energy of both gases combined is

$$
\Delta U=\Delta U_{O 2}+\Delta U_{A r}=6.25 R \Delta T+4.5 R \Delta T
$$

$$
\begin{equation*}
\Delta U=10.75 R \Delta T \tag{1}
\end{equation*}
$$

Now for the mixed gas we also know that

$$
\begin{equation*}
\Delta U_{\text {mixed }}=n_{\text {mixed }} C_{V} \Delta T \tag{2}
\end{equation*}
$$

Comparing equations 1 and 2 we see that

$$
n_{\text {mixed }} C_{V}=10.75 R
$$

There is a total of 5.5 moles of gas and, therefore, the specific heat of the mixed gas is

$$
C_{V}=\frac{10.75 R}{n_{\text {mixed }}}=\frac{10.75 R}{5.5}=1.95 R
$$

The specific heat at constant pressure is

$$
C_{P}=C_{V}+R=1.95 R+R=2.95 R
$$

