Chapter 17 Problem $68{ }^{\dagger}$

Given

$\beta=a+b T+c T^{2}$
$a=-6.43 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
$b=1.70 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-2}$
$c=-2.02 \times 10^{-7}{ }^{\circ} C^{-3}$

Solution

Find the temperature at which water has the greatest density.
The temperature dependence of a volume for a substance can be expressed as a polynomial function derived from experimental data. This function taken to the third order would look like the following

$$
V=V_{0}\left(1+\alpha T+\lambda T^{2}+\gamma T^{3}\right)
$$

Therefore, the maximum of the volume (giving the minimum of density) could be determined by taking the derivative with respect to temperature and set it equal to zero. The derivative is

$$
\frac{d V}{d T}=V_{0}\left(\alpha+2 \lambda T+3 \gamma T^{2}\right)
$$

Now the coefficient of volume expansion is defined to be

$$
\beta=\frac{\Delta V / V}{\Delta T}
$$

Given the polynomial expression above we have

$$
\Delta V=V-V_{0}=V_{0}\left(1+\alpha T+\lambda T^{2}+\gamma T^{3}\right)-V_{0}=V_{0}\left(\alpha T+\lambda T^{2}+\gamma T^{3}\right)
$$

Varying T gives

$$
\beta=\frac{\Delta V / V}{d T}=V_{0}\left(\alpha+2 \lambda T+3 \gamma T^{2}\right)
$$

Notice that the definition of β is really the slope of the polynomial function from the empirical data. Therefore, to get the maximum volume for the water, set β equal to zero and solve

$$
\beta=a+b T+c T^{2}=0
$$

Using the quadratic formula

$$
\begin{aligned}
& T_{\operatorname{maxV}}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c}=\frac{-\left(1.70 \times 10^{-5}\right) \pm \sqrt{\left(1.70 \times 10^{-5}\right)^{2}-4\left(-6.43 \times 10^{-5}\right)\left(-2.02 \times 10^{-7}\right)}}{2\left(-2.02 \times 10^{-7}\right)} \\
& T_{\operatorname{maxV}}=3.97,80.2^{\circ} \mathrm{C}
\end{aligned}
$$

Since the second value is outside of the range under which the approximation is valid, the maximum volume must occur at $3.97^{\circ} \mathrm{C}$.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

