Chapter 17 Problem $63{ }^{\dagger}$

Given

$T_{i}=10{ }^{\circ} \mathrm{C}$
$T_{f}=25^{\circ} \mathrm{C}$
$V_{f}=60 L$
$\beta=95 \times 10^{-5} K^{-1}$

Solution

Find the volume placed in the tank which will not over flow when the gas warms up.
The volume expansion is given by

$$
\beta=\frac{\Delta V / V}{\Delta T}
$$

This leads to the formula

$$
\Delta V=\beta V \Delta T
$$

Now the initial volume plus the increased volume must equal 60 L .

$$
V+\Delta V=60 L
$$

Substituting the first equation into the second gives

$$
V+\beta V \Delta T=60 L
$$

$$
V(1+\beta \Delta T)=60 L
$$

Solving for V gives

$$
\begin{aligned}
V & =\frac{60 L}{1+\beta \Delta T}=\frac{60 L}{1+\left(95 \times 10^{-5} K^{-1}\right)\left(25^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)} \\
V & =59.2 \mathrm{~L}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

