Chapter 17 Problem $45{ }^{\dagger}$

Given

$A=82,000 \mathrm{~km}^{2}=8.2 \times 10^{10} \mathrm{~m}^{2}$
$d=1.3 \mathrm{~m}$
$\rho=917 \mathrm{~kg} / \mathrm{m}^{3}$
$L_{f}=334 k J / k g$

Solution

a) Find the amount of energy required to melt all the ice on Lake Superior.

The heat required for a phase change is

$$
Q=m L_{f}=\rho V L_{f}=\rho d A L_{f}
$$

Substitute in the given values we have

$$
\begin{aligned}
& Q=\left(917 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.3 \mathrm{~m})\left(8.2 \times 10^{10} \mathrm{~m}^{2}\right)(334 \mathrm{~kJ} / \mathrm{kg}) \\
& Q=3.26 \times 10^{16} \mathrm{~kJ}=3.26 \times 10^{19} \mathrm{~J}
\end{aligned}
$$

b) Find the average power needed to melt the ice in 3 weeks.

First convert 3 weeks into seconds.

$$
\Delta t=3 \text { weeks }\left(\frac{7 \text { days }}{1 \text { week }}\right)\left(\frac{24 h}{1 \text { day }}\right)\left(\frac{3600 s}{1 h}\right)=1.81 \times 10^{6} s
$$

Heat flow is just an indication of the energy that has gone into melting the ice. Power is the rate of change of energy.

$$
\begin{aligned}
& P=\frac{\Delta Q}{\Delta t}=\frac{3.26 \times 10^{19} \mathrm{~J}}{1.81 \times 10^{6} \mathrm{~s}}=1.80 \times 10^{13} \mathrm{~W} \\
& P=18.0 \mathrm{TW}
\end{aligned}
$$

This may look like a large number, but if you calculate the power per square meter, you get $220 \mathrm{~W} / \mathrm{m}^{2}$. This could be done by sunlight if the ice did not reflect too much of it. Also conduction from warm air over the ice will contribute to the melting too.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

