Chapter 17 Problem $39{ }^{\dagger}$

Given

$h=100 \mathrm{~cm}=1.00 \mathrm{~m}$
$D=20.0 \mathrm{~cm}$
$r=10.0 \mathrm{~cm}=0.10 \mathrm{~m}$
$T_{0}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
$P_{0}=180 \mathrm{~atm}$

Solution

a) Find the number of moles of air in the cylinder.

Convert the pressure into pascals.

$$
P_{0}=(180 \mathrm{~atm})\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=1.82 \times 10^{7} \mathrm{~Pa}
$$

Next calculate the volume of the cylinder. Since the diameter is given, the cross-sectional area of the cylinder is that of a circle.

$$
A=\pi r^{2}=\pi(0.10 m)^{2}=0.0314 m^{2}
$$

The volume is the cross-sectional area multiplied by the height

$$
V=A \cdot h=\left(0.0314 m^{2}\right)(1.0 m)=0.0314 m^{3}
$$

Now use the ideal gas law to find the number of moles

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{P V}{R T}=\frac{\left(1.82 \times 10^{7} \mathrm{~Pa}\right)\left(0.0314 \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(293 \mathrm{~K})}=235 \mathrm{~mol}
\end{aligned}
$$

b) What volume would this air occupy if at 1 atm ?

If the temperature and number of moles remains constant, then

$$
P_{0} V_{0}=\mathrm{const}=P_{f} V_{f}
$$

The final volume is then

$$
V_{f}=\left(\frac{P_{0}}{P_{f}}\right) V_{0}=\left(\frac{180 \mathrm{~atm}}{1 \mathrm{~atm}}\right)\left(0.0314 \mathrm{~m}^{3}\right)=5.65 \mathrm{~m}^{3}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

