Chapter 16 Problem $50{ }^{\dagger}$

Given

$P=10 \%$ of $3.0 G W$
$V=420 \mathrm{~m}^{3}$
$T=20^{\circ} \mathrm{C}$
$c=1 \mathrm{kcal} / \mathrm{kgK}$
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Find the time for the water to reach the boiling point.
First find the amount of heat required to reach the boiling point.

$$
\Delta Q=m c \Delta T
$$

The mass of water is equal to its volume times density

$$
\begin{aligned}
& \Delta Q=\rho V c \Delta T \\
& \Delta Q=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(420 \mathrm{~m}^{3}\right)(1 \mathrm{kcal} / \mathrm{kg} \cdot \mathrm{~K})\left(80^{\circ} \mathrm{C}\right) \\
& \Delta Q=3.36 \times 10^{7} \mathrm{kcal}
\end{aligned}
$$

Convert the kcal to joules

$$
\Delta Q=3.36 \times 10^{7} \mathrm{kcal}\left(\frac{4184 J}{1 k c a l}\right)=1.41 \times 10^{11} J
$$

The heat flow is equal to the energy provided by the reactor. Since power is energy per time we have

$$
P=\frac{\Delta Q}{\Delta t}
$$

The power provided to warm up the water is 10% of $3 G W$. This comes out to

$$
P=3 \times 10^{8} \mathrm{~W}
$$

Solving for time gives us

$$
\Delta t=\frac{\Delta Q}{P}=\frac{\left(1.41 \times 10^{11} \mathrm{~J}\right)}{\left(3.0 \times 10^{8} \mathrm{~W}\right)}=469 \mathrm{~s}
$$

This would be 7.81 minutes.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

